TIME

الجمعة، مايو 8

EPISODE 1




                      Spinal Cord Injury

Spinal cord injury (SCI) is an injury to the spinal cord or nerve tracts that relay signals to and from the brain and body. Trauma is the leading cause of spinal cord injury and is caused most commonly by motor vehicle accidents. Falls and violent acts account for the second leading causes of spinal cord injury. Traumatic spine injury occurs in approximately 1 in 10,000 individuals per year; most are males in their teens or twenties. Greater than half of cord injuries occur in the cervical spine region, a third in the thoracic region, and the remainder in the lumbosacral area. Paramount to vertebrae injury is the question of neurological injury. Most cases of spine injury do not involve permanent cord injury. The standard of medical care demands a high index of suspicion of injury in certain type types of trauma. This means that in certain types of trauma the safest medical strategy is to assume an unstable fracture or dislocation of the vertebrae exists until proven otherwise. This point of view must be part of the working assumption of the entire medical team providing care to a trauma patient. As part of the medical team continuum of patient care, the radiographer must also assume spine injury until proven otherwise.

The management of a patient with a potential spinal cord injury begins in the pre-hospital environment under the care of paramedics. They are specially trained to identify common situations in which a spinal cord injury is likely to occur and correctly immobilize the patient. Ideally, the patient is immobilized in the neutral position on a full spine board with a combination of a cervical collar, side head supports, and strapping of the shoulders and pelvis so that the neck is not the center of the body's rotation. The spine is protected at all times during transport because it is not the center of the body's rotation should the patient move involuntarily. Sandbags and a cervical collar alone do not provide maximum protection when moving the patient, the shoulders and pelvis must be strapped to the board also. When the patient is moved to a gurney or x-ray table the spine must stay in alignment and not be rotated. The rule for protecting the spine from further injury is to immobilize it. These precautions are the standard of care for handling a trauma patient suspected of spine injury. 

Once the patient arrives in the hospital trauma suite, the patient may be removed from the spine board to a rigid transfer board. Logrolling the patient is the standard maneuver for any movement of the patient. This transfer process allows physical evaluation of the back (alignment of the spinous processes), rectum for bleeding, and other data. Under no circumstance should the log-roll technique be short changed by too few movers. The radiographer should not participate in the logroll procedure unless properly trained. If a transfer from the spine board is done it must be accomplished under the direct guidance of the trauma physician(s). The process can use nursing, emergency medical technicians (EMT), and providers from the trauma team. To properly logroll the patient there must be at least two persons on each side of the patient, and one at the head end to support the neck. The procedure should be smooth, and the entire spine kept in alignment during the movement.

To help understand the severity of spinal cord injuries and the radiographer's role in providing diagnostic images of the spine, a brief review of the structure of the vertebrae and spinal cord is essential. In this module we will explore current imaging standards and recommended imaging protocols for radiographic examination of the cervical spine and its spinal cord segments in critically injured patients. Although institutions vary in the type and functionality of radiographic equipment, trauma imaging standards can be completed using any available equipment. The key to a good radiography department’s response to trauma is the education of the technologists dealing with trauma. By remaining updated in current radiographic imaging standards the technologist is armed with the understanding of what it is to have a high suspicion for injury that translates into safe quality patient care


Anatomy of the Cervical Vertebrae
There are seven cervical vertebrae that are numbered from top to bottom (C1, C2, C3, C4, C5, C6, and C7). They are conveniently labeled as typical or atypical according to their anatomical features. The typical cervical vertebrae have the following parts: a vertebral body, two pedicles, two lamina, and a single spinous process, two transverse processes, two inferior, and two superior articular processes. Vertebrae three through six are typical cervical vertebrae. The first, second, and seventh cervical vertebrae are atypical. Regardless of whether a vertebra is typical or atypical there are some features shared by all cervical vertebrae that distinguish them from other vertebrae like the thoracic, lumbar, or sacral vertebrae.

Typical Cervical Vertebrae (C3-C6)

A typical vertebra is conventionally divided into two parts: a large anterior portion called the body and posterior to it the vertebral arch. The body bares the weight of the trunk, whilst the arch protects the spinal cord and its associated nerve roots. The vertebral arch is formed by two pedicles that extend from the posterolateral portion of the vertebral body joining the two laminae to make up the posterior bony ring. The posterior portions of the vertebral body along with its bony arch form a large foramen called the vertebral foramen. Successive stacking of the vertebral foramina forms a bony tube, called the vertebral canal, which encloses the spinal cord and its meninges. On each side of the vertebral arch, projecting laterally from the union of the pedicle and lamina is a transverse process. Extending posteriorly from the junction of the laminae is a single spinous process. The transverse processes and spinous process act as levers to which muscles attach to effect movement of the spine.

Also arising from the arch are four processes called zygapophyses that participate in forming joints of the spine. Two project superiorly and two inferiorly and are so named the superior and inferior articular processes. Each process bares a facet for articulation with an adjacent vertebra’s zygapophyses. The zygapophyses form joints called apophyseal joints. These articular surfaces are where joint movements of the spine occur

Articulations of superior articular processes of one vertebra and the inferior articular processes of an adjacent vertebra form a joint termed an apophyseal joint. Each articular process bares a facet, which is a smooth area on the bone where joint
articulation takes place. Each vertebra articulates with an adjacent vertebra above it and the vertebra below it to share four apophyseal joints, two above and two below. These joints are classified as diarthroses or synovial joints. Synovial joints provide free movement between the bones they join. They have an articular cartilage membrane surrounding a joint cavity. Within the membrane bound space is synovial fluid that reduces friction between the bones. In the spine these joints are capable of flexion, extension, lateral bending, and rotational movements
The posterior quadrilateral architecture and anterior vertebral architecture

Along with the apophyseal joints, the posterior quadrilateral architecture of each vertebra is anatomically important. This area encompasses those structures from the posterior boundary of the vertebral body to the spinous process. Its bony structures include the pedicles, laminae, superior articular processes, and inferior articular processes. The posterior quadrilateral architecture describes those structures that form the vertebral foramen as viewed on a lateral radiograph of the cervical spine.
The reason the posterior architecture is so important radiographically is that it involves structures that surround the spinal cord. A fracture involving the vertebral foramen could damage the spinal cord causing significant consequences for the patient. It is crucial to cervical spine imaging that the entire quadrilateral architecture is demonstrated for all cervical vertebrae and the first thoracic vertebra


The anterior architecture of the vertebra consists of the vertebral body for typical vertebrae and for atypical vertebrae C2 and C7. The boundary for the anterior architecture is the posterior and anterior contour lines. Structures to be found between these two lines are the vertebral bodies, intervertebral disc
, and ligaments that support the spine. Now we can look at the gross anatomy of the cervical spine as regions whose boundaries are formed by the anterior contour line, posterior contour line, and laminospinal line.

The intervertebral disc

The intervertebral discs are interposed between adjacent vertebral bodies placing them within the boundaries of the anterior architecture of the spine. The structure of an intervertebral disc consists of concentric outer rings of fibrous tissue called the annulus fibrosus. The annulus fibrosus provides the strongest attachment affixing vertebrae together. The center of the disc is a fluid moiety called the nucleus pulposus. It hydrostatically maintains the height of the vertebral column. The intervertebral disc is classified as a symphyses joint, which affords slight movement


The fluid moiety (nucleus pulposus) in the center of the intervertebral disc is seen. Surrounding the nucleus is a dark band that is the annulus fibrosus. Notice how the
annulus is tightly bound to the vertebral bodies holding them together, whilst the liquid moiety maintains the height of the space between the bodies. Also notice how the anterior and posterior longitudinal ligaments are firmly attached to the bodies and intervertebral discs
Anterior to the discs and vertebral bodies is a tightly bound anterior longitudinal ligament. It extends from the anterior surface of the sacrum to the anterior tubercle of the atlas and portions of the skull. Its role is to limit hyperextension of the vertebral column. The posterior longitudinal ligament is firmly fixed to the posterior periosteum of the vertebral bodies and intervertebral discs. It runs from the sacrum to the atlas and is within the vertebral canal. It functions to limit hyperflexion of the vertebral column
.

ليست هناك تعليقات: